Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Sci Rep ; 11(1): 17332, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1379335

ABSTRACT

Private Set Intersection Cardinality that enable Multi-party to privately compute the cardinality of the set intersection without disclosing their own information. It is equivalent to a secure, distributed database query and has many practical applications in privacy preserving and data sharing. In this paper, we propose a novel quantum private set intersection cardinality based on Bloom filter, which can resist the quantum attack. It is a completely novel constructive protocol for computing the intersection cardinality by using Bloom filter. The protocol uses single photons, so it only need to do some simple single-photon operations and tests. Thus it is more likely to realize through the present technologies. The validity of the protocol is verified by comparing with other protocols. The protocol implements privacy protection without increasing the computational complexity and communication complexity, which are independent with data scale. Therefore, the protocol has a good prospects in dealing with big data, privacy-protection and information-sharing, such as the patient contact for COVID-19.


Subject(s)
COVID-19 , Computer Security , Confidentiality , Computer Communication Networks , Confidentiality/legislation & jurisprudence , Humans , Information Dissemination
2.
Security and Communication Networks ; 2020, 2020.
Article in English | Web of Science | ID: covidwho-837555

ABSTRACT

Private set intersection (PSI) allows participants to securely compute the intersection of their inputs, which has a wide range of applications such as privacy-preserving contact tracing of COVID-19. Most existing PSI protocols were based on asymmetric/symmetric cryptosystem. Therefore, keys-related operations would burden these systems. In this paper, we transform the problem of the intersection of sets into the problem of finding roots of polynomials by using point-value polynomial representation, blind polynomials' point-value pairs for secure transportation and computation with the pseudorandom function, and then propose an efficient PSI protocol without any cryptosystem. We optimize the protocol based on the permutation-based hash technique which divides a set into multisubsets to reduce the degree of the polynomial. The following advantages can be seen from the experimental result and theoretical analysis: (1) there is no cryptosystem for data hiding or encrypting and, thus, our design provides a lightweight system;(2) with set elements less than212, our protocol is highly efficient compared to the related protocols;and (3) a detailed formal proof is given in the semihonest model.

SELECTION OF CITATIONS
SEARCH DETAIL